Midlatitude cyclones: cloud distribution in warm fronts

Catherine Naud
Anthony Del Genio
Mike Bauer

The classical picture

 Bergen school, 1920's, based on accounts from ground based observers

Fig. 1.
Idealized cyclone.

Top view: satellites

- Since the 1970s, satellite offer new perspective
- Example from MODIS TERRA, 2/07/2009, 2310-2320 UT

View inside?

- Aircrafts: not exactly safe nor pleasant
- Active instruments, such as Radars: much better, ground based ok but on polar orbiter even better
- 35GHz or 94-95 GHz, "cloud" radars sensitive to hydrometeors (precip+clouds)
- CloudSat: 2D slices of troposphere, available since June 2006

CloudSat: Dec 2 2006

Source: http://www.cloudsat.cira.colostate.edu

CloudSat cloud mask along orbit center on intersect with warm front (flag between 20 and 40 included)

Vertical cloud frequency of occurrence across warm fronts

- 2 questions:
 - on average, are CloudSat observations giving us a cloud distribution close to classical picture?
 - Can the GISS GCM give cloud distributions similar to the observations?
- 2 winters of NCEP and CloudSat observations (2006-2007 and 2007-2008) for north Atlantic and north Pacific (30-50 °N)
- NCEP midlatitude cyclone database, MCMS, by M. Bauer + surface winds and temperature gradient => warm fronts
- Build composite of cloud frequency of occurrence based on CloudSat cloud mask in cross-section perpendicular to warm front
- => 39 warm front crossings in NCEP/CloudSat

CloudSat cloud frequency of occurrence across warm fronts

Compared to Bergen representation: low level clouds present prior and after the front, and more high-level clouds in warm sector

Simulated frequency of occurrence of clouds in warm front

- Use GISS model-E 2°x2.5°x40L (6F32, August 2005) instead of NCEP, and combine simulated stratiform and convective cloud fraction instead of CloudSat, 1 winter (Nov-Mar), 33 warm fronts
- Low-level clouds ok, high-level clouds in warm sector ok, but problems in frontal zone: parameterization? Missing processes?

Differences explored: cloud parameterization

Cloud formation based on RH

Composite of RH for same cross sections across warm fronts:

⇒ Humidity in GCM not lifted

=> Problem with dynamics?

Differences explored: dynamics?

 Composites of wind speed and vertical velocity across warm fronts:

Composite of velocity for same cross sections across warm fronts:

NCEP GCM

⇒ Vertical velocity too weak in GCM

Differences explored: impact of convection?

 straight or slantwise convection. How often are conditional instability (CI) and conditional symmetric instability (CSI) happening somewhere in warm sector/front?

% of storms	NCEP (39 storms)	GCM (33 storms)
No CI, no CSI	10%	45%
CI and/or CSI	90%	55%

No CI, no CSI =>

CI and/or CSI =>

 $\partial \theta_{s} / \partial z > 0$, OCEAN_goodwarm; no CSI, 4 storms

Preliminary conclusions

- Clouds in warm fronts occur less often in GCM, especially at mid-level, than in CloudSat observations
- Contamination of CloudSat cloud composites with precipitation
- problems with GCM:
 - vertical velocities too weak in GCM, humidity not lifted high enough across warm fronts
 - conditional and conditional symmetric instabilities occur less often in GCM than NCEP, but when they do, better agreement for frontal clouds